Identification of Cl(Ca) channel distributions in olfactory cilia.

نویسندگان

  • Dorjsuren Badamdorj
  • David A Edwards
  • Donald A French
  • Steven J Kleene
چکیده

Identification of detailed features of neuronal systems is an important challenge in the biosciences today. Transduction of an odor into an electrical signal occurs in the membranes of the cilia. The Cl(Ca) channels that reside in the ciliary membrane are activated by calcium, allow a depolarizing efflux of Cl(-) and are thought to amplify the electrical signal to the brain.In this paper, a mathematical model consisting of partial differential equations is developed to study two different experiments; one involving the interaction of the cyclic-nucleotide-gated (CNG) and Cl(Ca) channels and the other, the diffusion of Ca(2+) into cilia. This work builds on an earlier study (Mathematical modeling of the Cl(Ca) ion channels in frog olfactory cilia. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, 2006; Math. Comput. Modelling 2006; 43:945-956; Biophys. J. 2006; 91:179-188), which suggested that the CNG channels are clustered at about 0.28 of the length of a cilium from its open end. Closed-form solutions are derived after certain reductions in the model are made. These special solutions provide estimates of the channel distributions. Scientific computation is also used. This preliminary study suggests that the Cl(Ca) ion channels are also clustered at about one-third of the length of a cilium from its open end.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of olfactory masking in the sensory cilia

Olfactory masking has been used to erase the unpleasant sensation in human cultures for a long period of history. Here, we show a positive correlation between the human masking and the odorant suppression of the transduction current through the cyclic nucleotide-gated (CNG) and Ca2+-activated Cl- (Cl(Ca)) channels. Channels in the olfactory cilia were activated with the cytoplasmic photolysis o...

متن کامل

Ca2+-Activated Cl− Channels of the ClCa Family Express in the Cilia of a Subset of Rat Olfactory Sensory Neurons

The Ca(2+)-activated Cl(-) channel is considered a key constituent of odor transduction. Odorant binding to a specific receptor in the cilia of olfactory sensory neurons (OSNs) triggers a cAMP cascade that mediates the opening of a cationic cyclic nucleotide-gated channel (CNG), allowing Ca(2+) influx. Ca(2+) ions activate Cl(-) channels, generating a significant Cl(-) efflux, with a large cont...

متن کامل

Temporal Development of Cng and Ca

A Ca-activated Cl current constitutes a large part of the transduction current in olfactory sensory neurons. The binding of odorants to olfactory receptors in the cilia produces an increase in cAMP concentration, Ca enters into the cilia through CNG channels and activates a Cl current. In intact mouse olfactory sensory neurons little is known about the kinetics of the Caactivated Cl current. He...

متن کامل

The Ca-activated Cl Channel and its Control in Rat Olfactory Receptor Neurons

Odorants activate sensory transduction in olfactory receptor neurons (ORNs) via a cAMP-signaling cascade, which results in the opening of nonselective, cyclic nucleotide-gated (CNG) channels. The consequent Ca2+ influx through CNG channels activates Cl channels, which serve to amplify the transduction signal. We investigate here some general properties of this Ca-activated Cl channel in rat, as...

متن کامل

Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia

In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide-gated channels in the ciliary membrane enabling Ca(2+) influx. The ensuing elevation of the intraciliary Ca(2+) concentration opens Ca(2+)-activated Cl(-) channels, which mediate an excitatory Cl(-) efflux from the cilia. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical methods in the applied sciences

دوره 31 15  شماره 

صفحات  -

تاریخ انتشار 2008